Glibenclamide unresponsiveness in a Brazilian child with permanent neonatal diabetes mellitus and DEND syndrome due to a C166Y mutation in KCNJ11 (Kir6.2) gene.
نویسندگان
چکیده
Heterozygous activating mutations of KCNJ11 (Kir6.2) are the most common cause of permanent neonatal diabetes mellitus (PNDM) and several cases have been successfully treated with oral sulfonylureas. We report on the attempted transfer of insulin therapy to glibenclamide in a 4-year old child with PNDM and DEND syndrome, bearing a C166Y mutation in KCNJ11. An inpatient transition from subcutaneous NPH insulin (0.2 units/kg/d) to oral glibenclamide (1 mg/kg/d and 1.5 mg/kg/d) was performed. Glucose and C-peptide responses stimulated by oral glucose tolerance test (OGTT), hemoglobin A1c levels, the 8-point self-measured blood glucose (SMBG) profile and the frequency of hypoglycemia episodes were analyzed, before and during treatment with glibenclamide. Neither diabetes control nor neurological improvements were observed. We concluded that C166Y mutation was associated with a form of PNDM insensitive to glibenclamide.
منابع مشابه
The G53D mutation in Kir6.2 (KCNJ11) is associated with neonatal diabetes and motor dysfunction in adulthood that is improved with sulfonylurea therapy.
CONTEXT Mutations in the Kir6.2 subunit (KCNJ11) of the ATP-sensitive potassium channel (KATP) underlie neonatal diabetes mellitus. In severe cases, Kir6.2 mutations underlie developmental delay, epilepsy, and neonatal diabetes (DEND). All Kir6.2 mutations examined decrease the ATP inhibition of KATP, which is predicted to suppress electrical activity in neurons (peripheral and central), muscle...
متن کاملClinical and Molecular Genetic Analysis of Iranian Patients with Neonatal Diabetes demonstrating Mutations in KCNJ11 gene
Abstract We screened the KCNJ11 gene from 35 individuals clinically diagnosed with type 1 diabetes mellitus under the age of 6 months in 3 years duration. Six different heterozygous missense mutations were found in 7 of the 35 probands, which accounted for 20% of all individuals. A novel mutation W68R (No Locus, GU170814; 2009) was identified in the kir6.2, the pore-forming subunit of the KATP ...
متن کاملPermanent Neonatal Diabetes (DEND Syndrome).
DEND syndrome is a very rare syndrome of permanent neonatal diabetes mellitus, with an incidence of < 1/1000,000. It is defined as a triad of developmental delay, epilepsy, and neonatal diabetes. We report the case of a 9-month infant girl who presented with the most severe form of neonatal diabetes mellitus spectrum along with developmental delay and epilepsy. Genetic mutation testing confirme...
متن کاملSulfonylurea Therapy in Two Korean Patients with Insulin-treated Neonatal Diabetes due to Heterozygous Mutations of the KCNJ11 Gene Encoding Kir6.2
Permanent neonatal diabetes (PND) is a rare form of diabetes characterized by insulin-requiring hyperglycemia diagnosed within the first three months of life. In most cases, the causes are not known. Recently, mutations in the KCNJ11 gene encoding the Kir6.2 subunit of the ATP-sensitive K+ channel have been described in patients with PND. We report the first two Korean cases with PND due to a l...
متن کاملA gating mutation at the internal mouth of the Kir6.2 pore is associated with DEND syndrome.
Inwardly rectifying potassium (Kir) channels control cell membrane K+ fluxes and electrical signalling in diverse cell types. Heterozygous mutations in the human Kir6.2 gene (KCNJ11), the pore-forming subunit of the ATP-sensitive (K(ATP)) channel, cause permanent neonatal diabetes mellitus. However, the I296L mutation also results in developmental delay, muscle weakness and epilepsy. We investi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arquivos brasileiros de endocrinologia e metabologia
دوره 52 8 شماره
صفحات -
تاریخ انتشار 2008